due: Wednesday, Sept-15, 2010 – before class

1. Wave function

HW assignment, week 3

Hecht, problem 2.40:

Show that eqn. (2.64), which describes a plane wave of arbitrary form, satisfies the wave equation.

2. Photon flux

Hecht, problem 3.23:

How many photons per second are emitted from a 100 W yellow lightbulb (average wavelength, $\lambda = 550$ nm) if 2.5% of the applied energy is emitted as light? (The remainder is just dissipated as heat.)

3. Dielectric medium

Hecht, problem 3.41:

Determine the index of refraction of a medium that reduces the speed of light by 10% as compared to its speed in vacuum.

4. Inversion of the dispersion equation

Hecht, problem 3.53:

Show that the dispersion eqn. (3.70) can be rewritten as $1/(n^2 - 1) = -C/\lambda^2 + C/\lambda_0^2$ and determine C.

5. Application of the Cauchy equation (4 pts)

Hecht, problem 3.56:

Crystal quartz has refractive indices of $n_R = 1.557$ at $\lambda = 410.0$ nm and $n_R = 1.547$ at 550.0 nm. Using

 $n_R \approx C_0 + C_1/\lambda^2 + O(\lambda^{-4})$, the Cauchy approximation, estimate n_R at 610.0 nm.

6. CO dissociation

Hecht, problem 3.58:

If a photon is to dissociate a CO molecule into oxygen and carbon atoms, it must provide 11 eV of energy. What is the frequency of this UV photon?

(4 pts)

(4 pts)

(2 pts)

(4 pts)

(2 pts)